Multi-class Classification in Image Analysis Via Error-Correcting Output Codes

نویسندگان

  • Sergio Escalera
  • David M. J. Tax
  • Oriol Pujol
  • Petia Radeva
  • Robert P. W. Duin
چکیده

A common way to model multi-class classification problems is by means of Error-Correcting Output Codes (ECOC). Given a multi-class problem, the ECOC technique designs a codeword for each class, where each position of the code identifies the membership of the class for a given binary problem. A classification decision is obtained by assigning the label of the class with the closest code. In this paper, we overview the state-of-the-art on ECOC designs and test them in real applications. Sergio Escalera Dept. Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, Gran Via de les Corts Catalanes 585, 08007, Barcelona, Spain Computer Vision Center, Campus UAB, Edifici O, 08193, Bellaterra, Spain e-mail: [email protected] David M. J. Tax Information and Communication Theory (ICT) Group, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, PO Box 5031, 2600 GA, Delft, The Netherlands e-mail: [email protected] Oriol Pujol Dept. Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, Gran Via de les Corts Catalanes 585, 08007, Barcelona, Spain Computer Vision Center, Campus UAB, Edifici O, 08193, Bellaterra, Spain e-mail: [email protected] Petia Radeva Dept. Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, Gran Via de les Corts Catalanes 585, 08007, Barcelona, Spain Computer Vision Center, Campus UAB, Edifici O, 08193, Bellaterra, Spain e-mail: [email protected] Robert P. W. Duin Information and Communication Theory (ICT) Group, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, PO Box 5031, 2600 GA, Delft, The Netherlands e-mail: [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning efficient error correcting output codes for large hierarchical multi-class problems

We describe a new approach for dealing with hierarchical classification with a large number of classes. We build on Error Correcting Output Codes and propose two algorithms that learn compact, binary, low dimensional class codes from a similarity information between classes. This allows building classification algorithms that performs similarly or better than the standard and performing one-vs-...

متن کامل

Multi-class Classification with Error Correcting Codes

Automatic text categorization has become a vital topic in many applications. Imagine for example the automatic classification of Internet pages for a search engine database. The traditional 1-of-n output coding for classification scheme needs resources increasing linearly with the number of classes. A different solution uses an error correcting code, increasing in length with O(log2(n)) only. I...

متن کامل

Optimizing Linear Discriminant Error Correcting Output Codes Using Particle Swarm Optimization

Error Correcting Output Codes reveal an efficient strategy in dealing with multi-class classification problems. According to this technique, a multi-class problem is decomposed into several binary ones. On these created sub-problems we apply binary classifiers and then, by combining the acquired solutions, we are able to solve the initial multiclass problem. In this paper we consider the optimi...

متن کامل

Multi-class Text Categorization with Error Correcting Codes

Automatic text categorization has become a vital topic in many applications. Imagine for example the automatic classi cation of Internet pages for a search engine database. The traditional 1-of-n output coding for classi cation scheme needs resources increasing linearly with the number of classes. A di erent solution uses an error correcting code, increasing in length with O(log2(n)) only. In t...

متن کامل

Ranking Error-Correcting Output Codes for Class Retrieval

Error-Correcting Output Codes (ECOC) is a general framework for combining binary classification in order to address the multi-class categorization problem. In this paper, we include contextual and semantic information in the decoding process of the ECOC framework, defining an ECOC-rank methodology. Altering the ECOC output values by means of the adjacency of classes based on features and class ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010